skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roden, Eric E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Redox-sensitive elements figure prominently in studies of the evolution of Earth’s surface redox state, including the first major rise in atmospheric O2, the Paleoproterozoic Great Oxidation Event. Most Precambrian rocks endured multistage tectonothermal histories, however, adding ambiguity to interpretation of their chemistry. Here, we apply U-Th-Pb isotope geochronology to the highly oxidized ~2.06 Ga Kuetsjärvi Volcanic Formation, Pechenga Greenstone Belt, Russia, to constrain the age and extent of U oxidation. By contrasting the relative mobility of U and Th using Pb isotopes, we find that complete to near-complete oxidation and removal of U occurred shortly after eruption. We argue that this likely indicates relatively high atmospheric O2, where oxidative weathering and alteration produced a global pulse of U to the oceans. Such a pulse could explain widespread shifts in the U-Th-Pb isotope character of mantle reservoirs at ~2 Ga, including a decrease in the232Th/238U ratio of the mid-ocean ridge basalt source and inception of the high-238U/204Pb (HIMU) source to ocean island basalts, underscoring the connections between the redox character of the Paleoproterozoic surface and deep Earth. Using207Pb-206Pb,238U-206Pb,235U-207Pb, and232Th-208Pb geochronology, ~2.06 Ga oxidative loss of U may be distinguished from reintroduction of U at ~1.8 Ga during regional metamorphism, as well as Pb loss during a Phanerozoic tectonothermal event. Our results therefore establish the complex history of redox-sensitive element behavior in the rocks, highlighting the fact that elemental abundances, by themselves, are unlikely to capture straightforward proxy information in rocks that have seen multistage geologic histories. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026
  2. Oxidative weathering of pyrite plays an important role in the biogeochemical cycling of Fe and S in terrestrial environments. While the mechanism and occurrence of biologically accelerated pyrite oxidation under acidic conditions are well established, much less is known about microbially mediated pyrite oxidation at circumneutral pH. Recent work (Percak-Dennett et al., 2017, Geobiology, 15, 690) has demonstrated the ability of aerobic chemolithotrophic microorganisms to accelerate pyrite oxidation at circumneutral pH and proposed two mechanistic models by which this phenomenon might occur. Here, we assess the potential relevance of aerobic microbially catalyzed circumneutral pH pyrite oxidation in relation to subsurface shale weathering at Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in Pennsylvania, USA. Specimen pyrite mixed with native shale was incubated in groundwater for 3 months at the inferred depth of in situ pyrite oxidation. The colonized materials were used as an inoculum for pyrite-oxidizing enrichment cultures. Microbial activity accelerated the release of sulfate across all conditions. 16S rRNA gene sequencing and metagenomic analysis revealed the dominance of a putative chemolithoautotrophic sulfur-oxidizing bacterium from the genus Thiobacillus in the enrichment cultures. Previously proposed models for aerobic microbial pyrite oxidation were assessed in terms of physical constraints, enrichment culture geochemistry, and metagenomic analysis. Although we conclude that subsurface pyrite oxidation at SSCHZO is largely abiotic, this work nonetheless yields new insight into the potential pathways by which aerobic microorganisms may accelerate pyrite oxidation at circumneutral pH. We propose a new “direct sulfur oxidation” pathway, whereby sulfhydryl-bearing outer membrane proteins mediate oxidation of pyrite surfaces through a persulfide intermediate, analogous to previously proposed mechanisms for direct microbial oxidation of elemental sulfur. The action of this and other direct microbial pyrite oxidation pathways have major implications for controls on pyrite weathering rates in circumneutral pH sedimentary environments where pore throat sizes permit widespread access of microorganisms to pyrite surfaces. 
    more » « less